Fig. 4

Variation with pressure of the time required to obtain the standard θ'' result.

where \bar{x}^2 = mean square distance travelled by an atom in time t. Hence, if \bar{x}^2 is a constant, as is assumed in the present experiments:

$$D = \frac{\alpha}{t}$$
,

where α is a constant. Thus

$$\label{eq:lnt} \ln t \! = \! \frac{P\Delta V}{RT} + \frac{\Delta U}{RT} + \ln\,\frac{\alpha}{D_0} \,.$$

Thus at constant T and if D_0 and ΔV are independent of pressure, then the slope of $\ln t$ versus P will have a gradient of $\Delta V/RT$. From fig. 4 an activation volume ΔV for the diffusion process in the formation of θ'' precipitates

of 12.4 ± 0.4 cm³ mole⁻¹ is obtained. This can be compared with 10.02 cm³ mole⁻¹.

which is the molar volume of aluminium. In work on the effect of pressure on self-diffusion, D_0 is not independent of pressure but the correction to the activation volume due to this factor is less than 10%. For instance, Beyeler and Adda (1968) found that the uncorrected activation volume for vacancies

Variation with temperature of the time required to obtain the standard θ'' result.

in aluminium was $12\cdot 5$ cm³ mole⁻¹, and when the correction for the variation of D_0 with pressure was made, the activation volume became $12\cdot 9$ cm³ mole⁻¹, a correction of less than 4%.

To obtain the apparent activation energy for the formation of the θ'' precipitates, specimens were homogenized at 540°C, quenched to 0°C, aged at room temperature for 24 hr and then further aged at temperatures in